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Melting and evaporation in classical two-dimensional clusters confined by a Coulomb potential
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The thermal properties of a two-dimensional classical cluster of negatively charged particles bound by a
punctual positive charge are presented. The melting phenomenon is analyzed and the features which charac-
terize such a solid-liquid transition are highlighted. We found that the presence of metastable states strongly
modifies the melting scenario, and that the melting temperature of the system is determined by the height of the
saddle point energy separating the ground state and the metastable state. Due to the particular type of confine-
ment potential considered in this paper, we also found that, at sufficiently large temperature, the cluster can

become thermally ionized.
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I. INTRODUCTION

There has been an increased interest in the properties of
two-dimensional (2D) clusters of charged or neutral par-
ticles. These 2D clusters are remarkable systems with non-
trivial and unexpected physical behavior. One of the reasons
for this increased interest is that such systems are models for
many different experimental realizable systems. Surface
electrons on a thin liquid helium film [1,2], colloidal suspen-
sions on an inert substrate [3], dusty plasmas [4], and elec-
trons confined in low-dimensional semiconductor structures
[5] are some experimental realizations of such systems. Even
several model systems were recently realized experimentally
consisting of macroscopic objects as charged metallic balls
[6] and magnetic disks [7,8]. In addition, 2D clusters serve as
very convenient systems to test theoretical predictions for
different physical phenomena. For example, we can cite the
crystallization of a 2D electron gas in a triangular lattice
predicted by Wigner [9] and the microscopic theory of
Kosterlitz-Thouless-Halperin-Nelson- Young for phase transi-
tion in a 2D system [10-12], which is very different from the
analog 3D system.

Most of the papers dealing with 2D systems describe the
behavior of large systems, where the boundaries are not so
important. In such cases, the effect of the surface on most of
their thermodynamic properties is negligibly small when
compared with the effects produced by the total system. In
the opposite limit, small clusters are strongly affected by the
boundaries. Recently, some experiments [13-15] and nu-
merical simulations [16—19] investigated the structural and
dynamical properties of small 2D clusters. Such studies
clearly emphasize the importance of surfaces and finite size
effects. For example, the formation of a shell structure in
clusters with a small number of particles, the melting phe-
nomenon which is characterized by a two step process [19],
the stability against intershell rotation which is observed in
clusters with a “magic” number of particles [20], and the
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splitting of frequencies in the presence of a perpendicular
magnetic field which is associated with the edge magneto-
plasmons, and which is not observed in infinite systems
[18,21,22].

The melting phenomenon in three-dimensional (3D) crys-
tals is significantly different from the melting in two-
dimensional (2D) crystals. In the latter case, and as pointed
out by several authors, the transition from a solid phase to a
complete isotropic liquid phase can be characterized by a
two-step process with an intermediary hexatic phase
[10-12]. However, such a melting scenario is not unique and
it depends on the considered system. Furthermore, melting of
2D clusters is nonuniversal [15,16].

The melting phenomenon in small clusters of charged par-
ticles has also received considerable attention in recent years
[14,19,23-25]. Very interesting properties have been ob-
served in such systems, such as, e.g., a reentrant melting
behavior [24]. Recently, we proposed a different type of clas-
sical atom which is bound not by a parabolic or hard wall
type of confinement potential, but a Coulomb-type of poten-
tial [26]. In this system, the electrons are confined by a punc-
tual positive charge positioned under the 2D plane. Earlier,
we showed that, as a function of the strength of such a con-
finement potential, symmetry broken configurations can ap-
pear as a ground state, and in addition particles can unbound,
i.e., evaporate [26]. It is worth commenting that the parabolic
confinement potential is equivalent to a uniform neutralizing
background, which is essentially different from our Coulomb
confined case. The Coulomb type of confinement of the
present system offers two more important properties when
compared to the parabolic case: (1) the possibility to tune the
strength of the confinement potential, which allows us to
explore the importance of this feature in the behavior of the
static and dynamic properties of the system, and (2) the par-
ticles require only a finite amount of energy to move to in-
finity, i.e., particles can evaporate. The present system is not
purely academic, but may be realized experimentally. For
example, it is well-known that electrons above a liquid he-
lium surface form a 2D electron layer. Now one can insert
impurities in the substrate supporting the helium film, which
may confine the electrons laterally.
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FIG. 1. Schematic view of the system.

Recently we studied the normal modes of a 2D Coulomb
confined cluster of charged particles as a function of the
strength of the confinement potential, and we found that the
normal modes of the system are mainly controlled by the
strength of the confinement potential [22]. In the present pa-
per we investigate the thermal properties of the Coulomb
bound cluster, i.e., the melting of the ordered configuration
of particles and the thermal ionization process. Also very
recently, we showed that temperature-induced phase transi-
tions occur in the Coulomb bound cluster before the com-
plete melting of the system takes place [27]. These observa-
tions were also extended to the case of small clusters of
charged particles confined in a parabolic trap [28].

The present paper is organized as follows. In Sec. II we
present the model of our numerical approach. The analysis of
the melting in the present system is given in Sec. III. The
phenomenon of evaporation (or ionization) is discussed in
Sec. IV. Finally, our conclusions are given in Sec. V.

II. NUMERICAL APPROACH

We studied a system of N negatively charged particles
with charge —e, interacting through a repulsive Coulomb po-
tential and moving in the xy-plane. The particles are kept
together through a fixed positive charge Ze located at a dis-
tance a from the plane the particles are moving in (see Fig.
1). The total potential energy of this system is given by

2 N 2 N

o Ze 1 e 1 (1)
= — —_— 4+ — —_—
€ =1 \V,z+a2 € i>j=1 |ri_rj|

Here the symbol € stands for the dielectric constant, and r
={x,y} is the two component position vector of the particle.
For convenience, we express the electron energy in units of
E,=e?/(ea) and all the distances in units of a. The tempera-
ture 7 of the system will be expressed in units of T
=Ey/ kg, with kp the Boltzmann’s constant. This allows us to
rewrite Eq. (1) in the following dimensionless form:

N N
VA 1
H=-2

+
2
i=1 \71; +1

2)

i>j=1 |ri_rj|.

Note that the potential energy only depends on two param-
eters, namely, the number of particles N and the size of the
positive confinement charge Z.

The ground state configurations of the two-dimensional
system were obtained using the Monte Carlo (MC) method
(using the standard Metropolis algorithm [29]) and the modi-
fied Newton method [20]. The negatively charged particles
are initially put in random positions within some circular
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area and then allowed to reach a steady state configuration
after about 10° simulation steps. Simultaneously, we calcu-
lated the frequencies of the normal modes of the system us-
ing the Householder diagonalization technique [20]. The
configuration was taken as final when all frequencies squared
of the normal modes are positive and the energy did not
decrease further.

To study melting the system was heated up (where tem-
perature was increased by steps of 8T, typically ~1073) and
equilibrated at the new temperature during 5 X 10* to 10°
MC steps (one MC step corresponds with a displacement of
all particles). After annealing, the average energy is calcu-
lated, together with the mean squared radial displacement

N
=23 (D= e 3)
i=1

where p is the average distance between the particles at zero
temperature. The symbol ( ) stands for an average over typi-
cally 10% MC steps after equilibration of the system.

III. MELTING

We studied the influence of thermal fluctuations on the
configuration and investigate the structural phase transitions
and melting in a Coulomb confined cluster. An important
question is: does the confinement strength determine the
melting temperature, or is the symmetry of the configuration
more important? Preliminary results were presented in Ref.
[27].

The behavior of the system is investigated in the soft con-
finement limit, i.e., N=Z, which corresponds to the (almost)
neutral case, and where the correlational effects between the
particles are much more pronounced [30]. The opposite limit,
N<Z, is equivalent to the situation of a parabolic confined
cluster, which was already studied in previous papers
[19,25]. Here, the melting phenomenon is studied in small
clusters (N=12,11,10,9,8,7,6,5) for a fixed positive con-
finement charge Z=12. In order to characterize the melting
temperature, we made use of a Lindemann-like criterion,
which states that, in the case of Coulomb interaction, melting
occurs when the mean radial displacement approaches the
critical value <u,2e>=0.05 [19]. For finite size systems this
criterion is not exact because we have now a nonzero tem-
perature range over which melting occurs.

In Fig. 2, the mean squared radial displacement is pre-
sented as a function of temperature for clusters with N
=12,11,10,9,8,7,6,5 particles for fixed Z=12. The corre-
sponding zero temperature ground state configurations are
shown in Fig. 3. With exception the cluster N=7, metastable
states were not observed in these cases. Intuitively one ex-
pects that the neutral system (N=Z=12), which has the
smallest confinement energy per particle, has the lowest
melting temperature as can indeed be inferred from Fig. 2,
while a higher melting temperature is expected with decreas-
ing N because the clusters become more strongly confined.
Surprisingly, the latter behavior is not found in small clus-
ters. Figure 2 shows that the cluster (N=11; Z=12) has a
higher melting temperature than the clusters (N=10,9,8,7;

041502-2



MELTING AND EVAPORATION IN CLASSICAL TWO-...

0.10 7 ' {[z=12
% N
0.08| / S [
—x— 11
0.06 J—e—10]
NAn: —a— g
\? —v— 8
0.04 1=—7
—>— 6
0.02 ; =
P—D’V‘D—D_VD
0.00 1 L L
0.000 0005 0010 0015 0.020

T,
FIG. 2. The squared mean radial deviation as a function of tem-
perature, for clusters with different number of particles, which are
confined by a positive charge Z=12.

Z=12), which have higher net charge. Thus the confinement
energy is not the only determining factor for the value of the
melting temperature. In order to understand this, we investi-
gated the symmetry of the ground state configuration of the
different clusters. To characterize the symmetry of a configu-
ration, the different rotational symmetries which leave the
configuration invariant are considered. A rotation operator
over an angle 27/n is indicated as C,, and the larger the
value of n the higher the symmetry of the configuration.

In spite of the lower confinement energy per particle, the
cluster (N=11; Z=12), which is invariant under rotation Cs,
has a higher melting temperature than the less symmetric
clusters (N=10,9,8,7; Z=12) (invariant  under
C,,C5,C,,C;, respectively). This fact made us conclude that
the more packed and the more symmetric the particles are
arranged, the larger the stability, and consequently, the larger
the melting temperature. This statement is confirmed by the
highly symmetric cluster (N=6; Z=12) which has the largest
melting temperature (see Fig. 2). Note that its melting tem-
perature is even higher than the one for the cluster (N=5;
Z=12). When comparing the configurations of the clusters
N=35 (invariant under C,) and N=6 (invariant under Cs), we
observe that the last one is more symmetric. A similar depen-
dence of the value of the melting temperature on the sym-
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FIG. 3. Ground state configurations for 7=0. All clusters are
confined by a positive charge Z=12.
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FIG. 4. The mean squared radial displacement as a function of
temperature, for clusters consisting of N=10 particles, confined by
positive charges Z=10 and Z=12. The corresponding ground state
configurations at 7=0 are shown as insets.

metry of the cluster was also observed in other clusters with
different values for N and Z. But in cases when the symmetry
of the configurations is the same, the melting temperature is
determined by the strength of the confinement potential, as
shown in Fig. 4. The system N=10; Z=12 is more strongly
confined than the system N=Z=10, and it has indeed a
higher melting temperature while they have the same sym-
metry as clearly indicated in Fig. 4. From the previous re-
sults, we can conclude that the symmetry of the ground state
configuration is the dominant factor which determines the
melting temperature in small Coulomb confined clusters.
Next we investigated the effect of the presence of meta-
stable states on the melting temperature. As a typical ex-
ample, we consider a cluster with N=7 particles, which we
submit to different strengths of the confinement potential. In
Fig. 5, we show the corresponding ground state configura-
tions. Metastable states were observed only in the interval
11.3=<Z<13.5, and the corresponding configurations are
also presented in Fig. 5. For Z=11.9, the ground state con-
figurations have approximately the same symmetry (with a
rotation axis C), as clearly can be seen in Fig. 5. The same
is seen for Z>11.9, but now the new configurations have a
higher symmetry, i.e., C; [Figs. 5(i), 5(k), 5(m), and 5(0)].
The melting temperature as a function of Z for the cluster
with N=7 particles is shown in Fig. 6. We define regions (I)
[Z= 11.9)] and (1) [Z> 11.9)], where the ground state
configurations are different (see inset in Fig. 6). Starting
from the neutral case (Z=N=7), we notice that the melting
temperature increases with increasing strength of the con-
finement potential up to Z=10, which is in accordance of the
above conclusions that for clusters with identical symmetry
the strength of the confinement determines the melting tem-
perature. For Z> 10, the melting temperature decreases with
increasing Z, up to Z=12. In the interval 11.3=<Z<13.5 the
system has metastable states, and when Z— 11.9 the differ-
ence between the energy of the ground state and the energy
of the metastable state (E);s—E) becomes smaller (see open
symbols in Fig. 6). The height of the saddle point between
the two local minima should also become smaller (Fig. 7).
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As consequence, less thermal energy is needed for the cluster
to transit from one configuration to the other and thus the
melting temperature clearly follows the energy difference be-
tween the ground state and the lowest metastable state. For
Z>11.9, the symmetry of the ground state configuration in-
creases [see inset in Fig. 6—region(Il)]. The difference
(Eys—Eg) becomes larger with increasing value of Z. For
Z>13.5, no metastable states are found. The symmetry of
the ground state configuration is larger and consequently also
its melting temperature.

The same behavior of the melting temperature is observed
for clusters with a different number of particles, as can be
seen, e.g., in Fig. 8, for the cluster with N=11 particles. We
define again two regions, according to the symmetry of the
ground state configuration, which are shown as insets in Fig.
8. For Z=<16.7 the ground state configuration is like the one
presented in region (I), while for Z>16.7 the system
changes to the configuration shown in region (II). Metastable
states appear only for Z=15.4. As the previous case for the
cluster with N=7 particles, the melting temperature exhibits
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FIG. 6. The melting temperature as a function of Z for the clus-
ter with N=7 particles (closed squares). The difference between the
energy of the metastable state (Ej;s) and the energy of the ground
state (Eg) is also shown (open circles) with reference to the right
axis.

a minimum in the Z-interval where the ground state configu-
ration switches from one configuration to another, and where
metastable states are observed. Recently, Kong et al. also
found that the melting temperature of a 2D parabolic con-
fined cluster of particles interacting through a Yukawa poten-
tial is determined by the saddle point energy [25].

IV. EVAPORATION

In the present system the confinement potential reduces to
zero at infinity which allows for an unbinding of charges,
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FIG. 7. Sketch of the energy landscape for the cluster with N
=7 particles under different confinement strengths.
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FIG. 8. The same as Fig. 6, but now for N=11.

i.e., ionization of the cluster or evaporation [26,31]. For non-
zero temperature one particle may lend sufficient thermal
energy in order to get a large enough velocity to become
unbound. The difference in energy between the clusters with
N and N-1 particles is the binding energy of one particle to
the cluster with N particles. In this section, we analyze the
Coulomb bound cluster for temperatures beyond the melting
temperature 7,,. To do so, it is convenient to define some
quantities as, e.g., the mean density, p(r), and the mean pair
distribution function, g(r). In our simulations, these quanti-
ties were averaged over all Monte Carlo steps (typically 3
X 107 steps).
As a representative example, we consider the cluster with
=10 (Z=10) particles. In Figs. 9(a) and 9(b) the quantities
p(r) and g(r) are shown as a function of temperature. Notice
that the temperature dependence of p(r) and g(r) indicate a
nonuniform melting of the system, i.e., the external shells
melt before the internal ones. This phenomenon is due to the
nature of the confinement potential. The interaction between
the confinement charge and the external particles is screened
by the particles in the central region of the cluster, resulting
in a weaker effective confinement potential for the edge par-
ticles. Melting occurs at 7,,~0.0012, and a further increase
of the temperature leads eventually to the possibility of
evaporation of the first particle (at 7/T,= 0.018). This can be
seen in the inset of Fig. 9(a), which shows that the mean
radial displacement increases very fast with increasing tem-
perature for large 7. The cluster now has N=9 particles, and
its net positive charge is +1, which implies a higher effective
confinement energy per particle. The g(r) curves show that,
in the temperature interval corresponding to the unbinding of
one particle, the system is clearly in the liquid state with only
short range order [see Fig. 9(b), T/T;=0.017]. The mean
density curve at this temperature also reveals a diluted sys-
tem with no apparent structure. For higher temperatures (see
the curve for T/Ty,=0.030) a broad peak in the mean density
curve is formed around r=~0.4. This indicates a reorganiza-
tion of the particles in the system, where now three particles
are situated on the first ring with smaller radial oscillations
than the other ones located at larger distances from the cen-
ter. This conclusion is supported by the results of the mean
density and the mean pair distribution function for the cluster
(N=9;Z=10) at temperatures larger than the evaporation
temperature which corresponds to the ones observed in the
cluster (N=10;Z=10), at the same temperatures.
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FIG. 9. The density (a) and the pair distribution (b) function g(r)
as a function of distance, for the cluster with (N=10,Z=10) at
different temperatures. The inset of (a) shows the average radial
displacement as a function of temperature.

The evaporation of particles in the present system can be
nicely illustrated by considering the caloric curves, i.e., the
energy as a function of temperature. The caloric curves for
the clusters (N=10,9,8,7,6;Z=10) are shown in Fig. 10. A
precise evaporation temperature for a single particle cannot
be obtained due to the statistical nature of the evaporation
process. Different Monte Carlo runs lead to different times
for evaporation of the particle at a given temperature. For
this reason we averaged all the calculated quantities, i.e., the
values of energy, over an ensemble of Monte Carlo runs with
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FIG. 10. The energy as a function of temperature for clusters
confined by a positive charge Z=10.
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fixed duration. Due to this statistical averaging procedure
and the finite size of the considered system, the evaporation
process is smeared out, and we define the evaporation tem-
perature (T,,), which characterizes the evaporation of a
single charged particle from the N particle system, as the
temperature at which the second derivative of the energy
with respect to T is zero [32]. Such a temperature corre-
sponds to the midpoint of the transition region in the E ver-
sus T curve. The evaporation temperature is indicated by the
vertical thin dotted lines in Fig. 10. As can be observed, the
energy curve for the cluster with N=10 particles (solid line
in Fig. 10) merges into the one for the cluster with N=9
particles (dashed line in Fig. 10) after the unbinding of the
first particle. In the same way, the curve for the cluster N
=9 merges into the one for the cluster N=8 after the evapo-
ration of one more particle at 7,,/T,~0.05. For higher tem-
peratures the evaporation of the other particles occurs, one
by one, and a similar behavior is observed in the caloric
curve as a function of 7.

From Fig. 10 we notice that the binding energy increases
with increasing net charge of the system. Such a behavior is
clear since the particles become more and more confined.
The increase in the confinement energy of the particles is
reflected directly in the rate at which the energy is absorbed
by the system as a function of temperature. The ratio be-
tween the absorbed energy and the variation in the tempera-
ture of the system is the so-called heat capacity C. In the
present system, the heat capacity was obtained from the lin-
ear part of the caloric curves, before the evaporation of a
particle takes place, by calculating the slope of such a linear
curve. A high C means a high absorption rate of energy with
increasing temperature. The heat capacity for the clusters
with N=10,9,8,7,6,5,4,3 (all of them confined by a posi-
tive charge Z=10) are presented in Fig. 11. The heat capacity
decreases with decreasing number of particles. Two different
regimes can be distinguished, related to two different con-
figurational types. In the interval 7< N = 10 the increase in C
is larger than the one in the interval 3 <N =<6, in which the
configuration of the clusters corresponds to particles placed
on a single ring (for N=5 and N=6 there is also one particle
in the center).

V. CONCLUSIONS

We studied the thermal properties of a 2D classical system
of charges in a nonuniform charged background. We ad-
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FIG. 11. The heat capacity for clusters with different number of
particles N confined by a positive charge Z=10.

dressed melting in clusters with a small number of particles.
The considered nonuniform background introduces a new
property, namely, the evaporation of particles, which is not
observed in the parabolic confinement case. The solid-liquid
transition in Coulomb bound clusters is altered by the pres-
ence of metastable states. When such metastable states are
present, we showed that the melting temperature can be
strongly affected and is now determined by the height of the
saddle point energy separating the lowest metastable state
and the ground state. After the melting transition, the Cou-
lomb bound cluster can become ionized and particles unbind.
Due to the finite size of the system the evaporation of par-
ticles occurs one by one, which is a statistical process. The
latter results lead to a temperature evaporation region. The
importance of the symmetry of the ground state configura-
tion on the melting phenomenon was also shown for differ-
ent cases of those ones presented in our previous work [27].
The higher the symmetry of the configuration the higher the
melting temperature. However, when the systems have the
same configuration, the one with stronger confinement has a
higher melting temperature.
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